Jensen M. C. (1978). Some Anomalous Evidence Regarding Market Efficiency. Journal of Financial Economics, 6, 95-101.
Jonsson M. (1997). Studies in Business Cycles. PhD thesis, Institute for International Economic Studies, Stockholm University.
Kaplan D. T. and Glass L. (1992). Direct Test for Determinism in a Time Series.
Physical Review Letters, 68, 427-430.
Kennel M. B., Brown R. & Abarbanel H. D. I. (1992). Determining Embedding
Dimension for Phase-Space Reconstruction Using a Geometrical Construction.
Physical Review A, 45, 3403-3411.
Kolmogorov A. N. (1958). Novyi metritjeskij invariant tranzitivnych dinamitjeskich sistem i avtomorfizmov prostranstv lebega. Doklady Akademii Nauk SSSR, 119, 861-864.
Kurths J. and Herzel H. (1987). An Attractor in a Solar Time Series. Physica D,
Ktinsch H. R. (1989). The Jackknife and the Bootstrap for General Stationary Observations. The Annals of Statistics, 17, 1217-1241.
Lai D. and Chen G. (1995). Computing the Distribution of the Lyapunov Exponent from Time Series: The One-Dimensional Case Study. International Journal of Bifurcation and Chaos, 5, 1721-1726.
LeBaron B. (1996). Technical Trading Rule Profitability and Foreign Exchange Intervention. Working Paper.
Levich R. M. and Thomas L. R. (1993). The Significance of Technical Trading-
Rule Profits in the Foreign Exchange Market: A Bootstrap Approach. Journal
of International Money and Finance, 12, 451-474.
Liu R. Y. and Singh K. (1992). Moving Blocks Jackknife and Bootstrap Capture
Weak Dependence. In Exploring the Limits of Bootstrap by LePage R. and
Billard L. eds., John Wiley & Sons, 225-248.
Mane R. (1981). On the Dimension of the Compact Invariant Sets of Certain Nonlinear Maps. In Dynamical Systems and Turbulence by Rand D. and Young L. eds., Springer-Verlag, 230-242.
McCaffrey D. F., Ellner S., Gallant A. R. & Nychka D. W. (1992). Estimating
the Lyapunov Exponent of a Chaotic System With Nonparametric Regression.
Journal of the American Statistical Association, 87, 682-695.
Meese R. A. and Rogoff K. (1983). Empirical Exchange Rate Models of the Seventies: Do They Fit Out of Sample? Journal of International Economics, 14, 3-24.
Nychka D., Ellner S., Gallant A. R. & McCaffrey D. (1992). Finding Chaos in Noisy Systems. Journal of the Royal Statistical Society B, 54, 399-426.
Oseledec V. I. (1968). Multiplikativnja ergodntjeskja teorema.
Charakteristitjeskie pokazateli ljapunova dinamitjeskich sistem. Trudy Moskovskogo Matematitjeskogo Obstjestva, 19, 179-210.
Packard N. H., Crutchfield J. P., Farmer J. D. & Shaw R. S. (1980). Geometry from a Time Series. Physical Review Letters, 45, 712-716.
Parlitz U. (1992). Identification of True and Spurious Lyapunov Exponents from Time Series. International Journal of Bifurcation and Chaos, 2, 155-165.
Peitgen H.-O., Jurgens H. & Saupe D. (1992). Chaos and Fractals: New Frontiers of Science. Springer-Verlag.
Pesin Y. B. (1977). Characteristic Lyapunov Exponents and Smooth Ergodic Theory. Russian Mathematical Surveys, 32, 55-114.
Rosenstein M. T., Collins J. J. & De Luca C. J. (1993). A Practical Method for
Calculating Largest Lyapunov Exponents front Small Data Sets. Physica D, 65,
117-134.
Rosenstein M. T., Collins J. J. & De Luca C. J. (1994). Reconstruction Expansion
as a Geometry-Based Framework for Choosing Proper Delay Times. Physica D,
73,82-98.
Rosser Jr. J. B. (1997). Speculations on Nonlinear Speculative Bubbles. Nonlinear Dynamics, Psychology, and Life Sciences, 1, 275-300.
Ruelle D. (1989). Chaotic Evolution and Strange Attractors: The Statistical Analysis of Time Series for Deterministic Nonlinear Systems. Cambridge University Press.
Sano M. and Sawada Y. (1985). Measurement of the Lyapunov Spectrum from a Chaotic Time Series. Physical Review Letters, 55, 1082-1085.
Sauer T., Yorke J. A. & Casdagli M. (1991). Embedology. Journal of Statistical
Physics, 65, 579-616.
Shleifer A. and Summers L. H. (1990). The Noise Trader Approach to Finance.
Journal of Economic Perspectives, 4, 19-33.
Sinai JA. (1959). 0 ponjatii entropii dinamitjeskoj sistemy. Doklady Akademii Nauk SSSR, 124, 768-771.
Sjostedt S. (1997). Forecasting Methods for Multiple Time Series and Resampling Techniques for Nonstationary Sequences. PhD thesis, Department of Mathematical Statistics, Umea University.
Stoop R. and Parisi J. (1991). Calculation of Lyapunov Exponents Avoiding Spurious Elements. Physica D, 50, 89-94.
Sweeney R. J. (1986). Beating the Foreign Exchange Market. The Journal of Finance, 41, 163-182.
Takens F. (1981). Detecting Strange Attractors in Turbulence. In Dynamical Systems and Turbulence by Rand D. and Young L. eds., Springer-Verlag, 366-381.
Taylor M. P. and Allen H. (1992). The Use of Technical Analysis in the Foreign
Exchange Market. Journal of International Money and Finance, 11, 304-314.
Taylor S. J. (1992). Rewards Available to Currency Futures Speculators: Compensation for Risk or Evidence of Inefficient Pricing? The Economic Record, S68, 105-116.
Whang Y.-J. and Linton 0. (1997). The Asymptotic Distribution of Nonparametric Estimates of the Lyapunov Exponent for Stochastic Time Series. Forthcoming in The Journal of Econometrics.
Whitney H. (1936). Differentiable Manifolds. Annals of Mathematics, 37, 645-680.
Wolf A., Swift J. B., Swinney H. L. & Vastano J. A. (1985). Determining Lyapunov Exponents from a Time Series. Physica D, 16, 285-317.
Zeng X., Eykholt R. & Pielke R. A. (1991). Estimating the Lyapunov-Exponent
Spectrum from Short Time Series of Low Precision. Physical Review Letters,
66, 3229-3232.
Zeng X., Piellce R. A. & Eykholt R. (1992). Extracting Lyapunov Exponents from
Short Time Series of Low Precision. Modern Physics Letters B, 6, 55-75.
Prof. Mikael Bask
Next: Book: Exchange Rates
Summary: Index