Home > Doc > Reti Neurali su .... > Conclusioni

Reti neurali su Personal Computer e Fuzzy Logic: Applicazioni pratiche di una rete neurale EBP

Conclusioni

Per uscire un po’ dalla teoria vi fornisco un elenco di applicazioni pratiche realizzate con reti neurali in maggioranza di tipo error_back_propagation:

-sistema di guida autonoma di automobili che può guidare alla velocità di circa 5 Km/h nei viali della Carnagie Mellon University, avendo come input l'immagine della strada.E' una rete neurale error_back_propagation addestrata con 1200 immagini in 40 epoche su un supercomputer Warp. Il tempo di addestramento è stato di 30 minuti mentre la sua esecuzione richiede circa 200 msec su Sun-3.

- classificatore di segnali radar che raggiunge prestazioni che con tecniche Bayesiane non sono mai state raggiunte.

- lettore di testi che può pronunciare parole mai viste prima con una accuratezza del 90%: si tratta di una rete error_back_propagation con 309 unità e 18629 connessioni implementata in linguaggio c su VAX_780.

- riconoscitore di oggetti sottomarini attraverso sonar realizzato da Bendix Aerospace

- un sistema di scrittura automatico su dettatura in lingua finlandese o giapponese che ha una accuratezza compresa tra l'80% e il 97%. L'hardware prevede un filtro passa_basso e un convertitore analogico_digitale, mentre la rete neurale è di tipo autoorganizzante realizzata su pc AT con coprocessore TMS-32010.

- sistema di supporto alla decisione per la concessione prestiti realizzato con rete error_back_propagation con 100 input e 1 output(prestito concesso o no). L'apprendimento è stato effettuato con 270.000 casi di prestiti in 6 mesi.

- la rete Neuro-07 sviluppata da NEC riconosce al 90% caratteri stampati e la rete sviluppata dalla Neuristique riconosce il 96% dei caratteri numerici scritti a mano.La sua architettura prevede 256 input(16*16 pixels), uno strato nascosto di 128 neuroni ed un secondo di 16, uno strato di output di 10 neuroni(cifre da 0 a 9).

- la Hughes Research Lab ha realizzato una rete che può riconoscere visi umani anche con disturbi (barba/occhiali/invecchiamento).

- è stata realizzata una rete avente come input una immagine di 20*20 pixel con 16 livelli di grigio proveniente da proiezioni tomografiche di polmoni che restituisce in output l'immagine depurata del rumore(che è tanto più ampio quanto minore è il numero delle proiezioni). In pratica la rete fa una interpolazione di immagini discontinue sulla base di un addestramento di 60 immagini di polmoni con validation set di 120 immagini.

- la PNN(Probabilistic Neural Network) sviluppata da Lockheed interpreta correttamente il 93% dei segnali sonar con un addestramento di 1700 esempi di segnali riflessi da sommergibili e di 4300 esempi di echi riflessi da navi o da movimenti dell'acqua in superfice.

- una rete neurale è stata applicata in robotica per risolvere un problema di "cinematica inversa" del tipo: un braccio meccanico con due snodi deve raggiungere un target di coordinate R_t e alpha_t(R=raggio alpha=angolo) partendo da una situazione degli snodi alpha1_b e alpha2_b. Tale problema per essere risolto richiede il calcolo di funzioni trascendenti (trigonometriche inverse) ma con una rete neurale di 4 input(R_t,alpha_t,alpha1_b,alpha2_b), due strati intermedi rispettivamente di 6 e 4 neuroni e due neuroni di otput(alpha1_b,alpha2_b) si ottiene un risultato migliore con poco sforzo. Tale rete che comanda il manipolatore INTELLEDEX 605T è simulata su un PC_AT ed è stata addestrata con 64 esempi contenenti posizioni relative diverse tra target e braccio. Ciò che ha reso ancora più interessante l'applicazione è stato il fatto che la rete è risultata in grado di correggere disturbi al moto di avvicinamento del braccio e seguire un target in movimento(fig 15).

Per finire una considerazione: notate come con pochi neuroni negli strati intermedi si possano ottenere risultati applicativi di livello molto elevato.

Luca Marchese

Successivo: Reti Neurali Autoorganizzanti

Sommario: Indice